Self-incompatibility alleles from Physalis: implications for historical inference from balanced genetic polymorphisms.
نویسندگان
چکیده
Balanced genetic polymorphism has been proposed as a source from which to infer population history complementary to that of neutral genetic polymorphism, because genetic polymorphism maintained by balancing selection permits inferences about population size over much longer spans of time. However, empirical data for both S genes and major histocompatibility complex genes do not fit expectations of coalescent theory. Species-specific gene genealogies have longer terminal branches than expected, indicating an apparent slowdown in the origination of new alleles. Here, we present evidence that divergent S alleles were selectively maintained in Physalis cinerascens during a reduction in population size, generating longer terminal branches in the S gene genealogy relative to the congener Physalis crassifolia. Retention of divergent alleles during reduction in the number of alleles violates assumptions of the coalescent model used to estimate effective population size. Recent theoretical and empirical results are consistent with the proposition that nonrandom sorting is a general property of balanced genetic polymorphisms, suggesting that studies of balanced polymorphism that infer the absence of population bottlenecks may overestimate effective population size.
منابع مشابه
A 15-Myr-old genetic bottleneck.
Balancing selection preserves variation at the self-incompatibility locus (S-locus) of flowering plants for tens of millions of years, making it possible to detect demographic events that occurred prior to the origin of extant species. In contrast to other Solanaceae examined, SI species in the sister genera Physalis and Witheringia share restricted variation at the S-locus. This restriction is...
متن کاملIdentification of Self- incompatibility Alleles in Some Almond Genotypes by Degenerate S-RNase Primers
The almond, Prunus dulcis Miller which belongs to Rosaceae family, is one of the most important commercial and oldest cultivated tree nut crops. Almonds are classified as a ‘nut’ in which the edible seed is the commercial product. Therefore, pollination and fertilization are necessary in almond. The characteristic of cultivated almond to express gametophytic self- incompatibility discourages se...
متن کاملS-allele diversity in a natural population of Physalls crassifolla (Solanaceae) (ground cherry) assessed by RT-PCR
Allelic diversity at the self-incompatibility (S-) locus in the ground cherry, Physalis crassifolia (Solanaceae), was surveyed in a natural population occurring in Deep Canyon, CA, using a molecular assay to determine the genotype of individual plants. A total of 28 different S-alleles were identified and sequenced from a sample of 22 plants. All plants examined were heterozygous, as expected u...
متن کاملThe Study of Morphological Traits and Identification of Self-incompatibility Alleles in Almond Cultivars and Genotypes
The evaluation of an almond collection using morphological variables and identification of self-incompatibility genotype is useful for selecting pollinizers and for the design of crossing in almond breeding programs. In this study, important morphological traits and self-incompatibilities in 71 almond cultivars and genotypes were studied. Simple and multiplex specific PCR analyses were used in...
متن کاملSelf-incompatibility in the Iranian Almond Cultivar ‘Mamaei’ Using Pollen Tube Growth, Fruit Set and PCR Technique
Self-incompatibility has been studied by using controlled pollination, pollen tube growth and PCR methods in the Iranian almond ‘Mamaei.’. Pollen tube growth and fruit set following self and cross-pollination treatments were evaluated. The percentage of initial and final fruit set was determined for each treatment at 30 and 60 days after controlled pollination. Pollen germination and pollen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 1 شماره
صفحات -
تاریخ انتشار 1999